

Academia de Ciencias de Cuba

Center for Science Diplomacy

Future of the U.S. – Cuba Scientific Cooperation Delegation Workshop in Cuba March 19-23, 2023

Cooperation on Science: Addressing Shared Challenges on Communicable and Non-Communicable Diseases

Innovative Technology Transfer Models to Decolonize the Vaccine Sciences

Hospital^{*}

Texas Children's Maria Elena Bottazzi PhD FASTMH Sr. Associate Dean and Professor

Division Chief, Pediatric Tropical Medicine

Baylor

College of

Medicine

Co-Director, Texas Children's Center for Vaccine Development

Disclosure: Co-inventor and patent holder of several vaccine technologies against NTDs. Co-inventor of a COVID-19 recombinant protein vaccine technology owned by Baylor College of Medicine (BCM) licensed non-exclusively and without patent restrictions to various manufacturing companies

Texas Children's Hospital Center for Vaccine Development at Baylor College of Medicine

inin

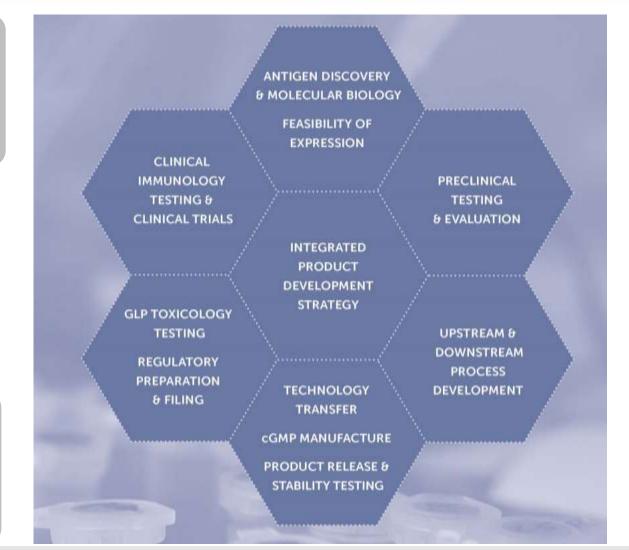
A Product Development Partnership Model
Established in Washington DC in 2000
Moved to Texas Medical Center in 2011
+ 50 scientific and technical staff
> 40 Global Partnerships

vaccines against

emerging and neglected

tropical diseases

٠


To develop and test new To buil low-cost and effective vaccing

To build capacity for vaccine development locally and with foreign nations To guide and influence vaccine policy and advocacy

A diverse vaccine development portfolio against neglected tropical and emerging infections

Hookworm, Schistosomiasis, Chagas, Leishmaniasis, Coronavirus, Tick-borne

Features and Impact of Global Morbidity Diseases

Neglected Tropical Diseases with vaccines under development

Disease	Stage of Vaccine Development	Prevalence in 2017 ⁷	Incidence in 2017 ⁷	Estimated DALYs in 2017 ⁸	Alternative disease burden estimates in DALYs
Hookworm Infection	Phase 1-2	229 million	Not Determined	845,000	4.1 million ⁹
Schistosomiasis	Phase 1-2	143 million	Not Determined	1.4 million	13-15 million ¹⁰
Dengue	Licensed (Dengvaxia)	6.3 million	105 million	2.9 million	0.3-5 million (+ arboviral diseases) ¹¹
Onchocerciasis	Preclinical	21 million	Not determined	1.3 million	128,000 additional ¹²
Chagas disease	Preclinical	6.2 million	162,500	232,000	806,170 ¹³
Leishmaniasis	Phase 1-2	4.1 million	669,100	774,000	>2 million just for cutaneous leishmaniasis ¹⁴
Leprosy	Phase 1	518,500	48,500	31,500	Local or regional estimates only
Yellow Fever	Licensed	2,600	97,400	314,000	0.3-5 million (+ arboviral diseases) ¹¹
Rabies	Licensed	500	13,400	634,000	3.7 million canine rabies ¹⁵
Total NTDs	-	~400 million	Not determined	8.5 million	> 30 million

HUMAN VACCINES & IMMUNOTHERAPEUTICS https://doi.org/10.1080/21645515.2019.1629254

A Framework to Intersect Vaccine Science and Diplomacy

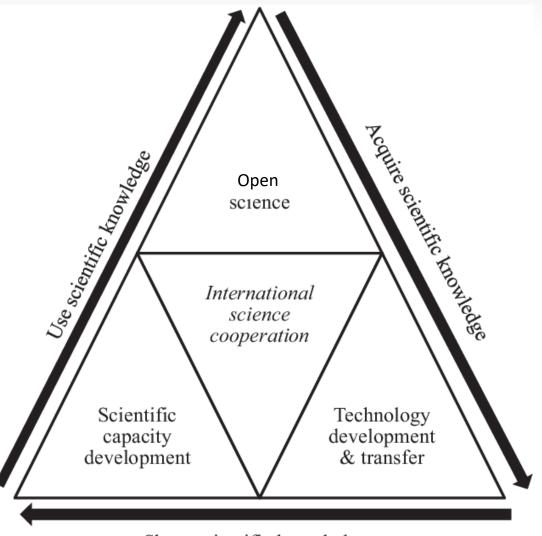
Open Science – technology transfer, share knowledge, data, reagents, open access publications and build capacity

Team-based approaches - Effective and holistic full spectrum of STEAM disciplines and beyond

Appropriate and diversified technologies - based on country/regional/global priorities. Early inclusion and understanding of community (local) needs and preferences

Reverse innovation with LMIC collaborations to <u>decolonize</u> the vaccine sciences with Transparency, Trust, Solidarity and Equity

Incentivize disease-endemic country ownership


Achieve **improved health outcomes** in the most safe and cost-effective manner

Value science engagement connected to policymaking, education, governance, and dialogue with society

Remove **Barriers** (limited or no IP/Patents)

Out of the box **funding** - Traditional and alternative

Adopted Coronaviruses (SARS/MERS) as Neglected Infections

Developed the first vaccine for human hookworm infection now entering phase 2 clinical trials

Developed the first vaccine for intestinal schistosomiasis now entering phase 2 clinical trials

Developed the first vaccine for Chagas disease now entering phase 1 clinical trials

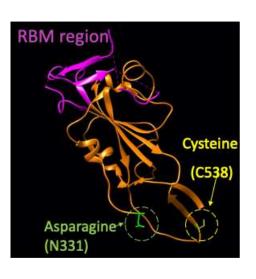
SARS RBD Vaccine:

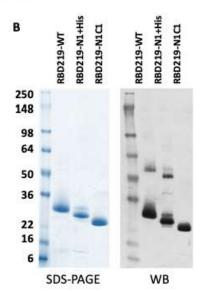
 Pre-clinical data (regulatory enabling) package complete

- MCB, PCB and Drug Substance produced at WRAIR
- Preclinical efficacy and safety

Coronavirus partnerships launched first in 2011 and expanded in 2020:

- Focused on low-cost technology using microbial fermentation in yeast
- Targeted the Receptor Binding Domain as vaccine target
- Ensured scalability, ease of production, efficacy, safety, regulatory enabled path and affordability
 - NIH/NIAID and other seed funding instrumental
- Leveraged SARS/MERS lessons to advance Coronavirus (and COVID-19) vaccine R&D


Scientific and Technical Strategy

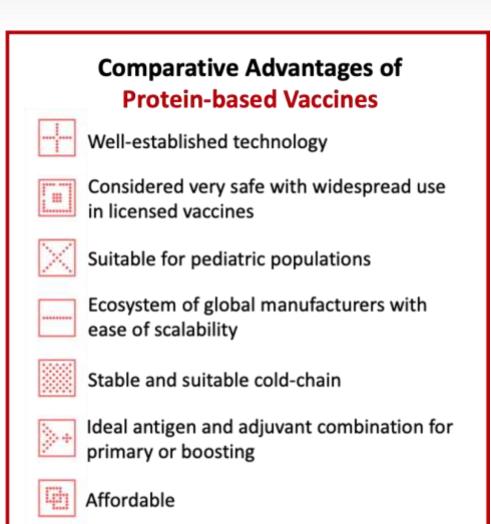

- Engineer yeast-produced recombinant RBD vaccine antigens **THE STARTER KITS**
 - Production of seeds and research cell banks fully characterized
- Process development, formulation and preclinical testing:
 - Scale-up to 10L fermentation and purification design of experiments – THE RECIPES
- Develop and qualify analytical (biochemical/biophysical) and functional release and stability indicating assays – THE ASSAYS FOR QUALITY, STABILITY and EFFICACY
- Technology transfer to pilot and/or industrial manufacturers
 - Co-develop and support manufacturing maturity and the transition to GLP toxicology and Clinical Trials – SHARE (Publish) WIDELY – Intentional IP, non-exclusive licensing and NO PATENT

Engineering Strategy: Selection of SARS CoV-2 RBD 219-N1C1 Construct (residues 331–549) and RBD 203-N1 Construct (residues 332-533)

RBD219-WT	ITNLCPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGVSPTKLNDL	60
RBD219-N1	ITNLCPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGVSPTKLNDL	59
RBD219-N1C1	ITNLCPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGVSPTKLNDL	59
RBD219-WT	CFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNSNNLDSKVGGNYN	120
RBD219-N1	CFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNSNNLDSKVGGNYN	119
RBD219-N1C1	CFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAW <mark>NSNNLDSKVGGNYN</mark>	119
RBD219-WT	YLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVGYQPYRV	180
RBD219-N1	YLYRLFRKSNLKPFERDISTETYQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVGYQPYRV	179
RBD219-N1C1	YLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVGYQPYRV	179

RBD219-WT	VVLSFELLHAPATVCGPKKSTNLVKNKCVNFNFNGLTGT 219	
RBD219-N1	VVLSFELLHAPATVCGPKKSTNLVKNKCVNFNFNGLTGT 218	
RBD219-N1C1	VVLSFELLHAPATVCGPKKSTNLVKNKAVNFNFNGLTGT 218	

Technology Transfer and Commercial Strategy


Core invention. Well known recombinant protein technology

- IP centered around genetic engineering of the viral RBD antigen
- Less room for broad patent fence covering related novel technologies
- Less interest from multinationals looking for broad IP protection
 Protein technology initially perceived as slow during a pandemic response
- Albeit 10-yr prior SARS/MERS vaccine experience
- Technology would not have first mover advantage
- Regulatory fast-track uncertain

Previous experience prosecuting a SARS patent application

- Anticipated Office Action response/rejection
- Previous SARS application would likely serve as prior art for COVID-19 Additional considerations
- Rapid evolution of new variants WT RBD as core IP = narrow claims
- IP protection would become obsolete prior to realization of value
- Opportunities to build future commercialization in the global south

Vaccine Development Business Models

Scenario 1 – Evaluative MTAs, Tech Transfer and Non-Exclusive Licensing

The India, Indonesia and Bangladesh Case

- Established industrial manufacturers with prior Hepatitis B Vaccine, WHO PQ & international experience
- Aligned global health mission/vision

Scenario 2 – Capacity Building

The Botswana Case

- Limited workforce capability
- No vaccine development infrastructure

Botswana launches COVID-19 vaccine manufacturing plant

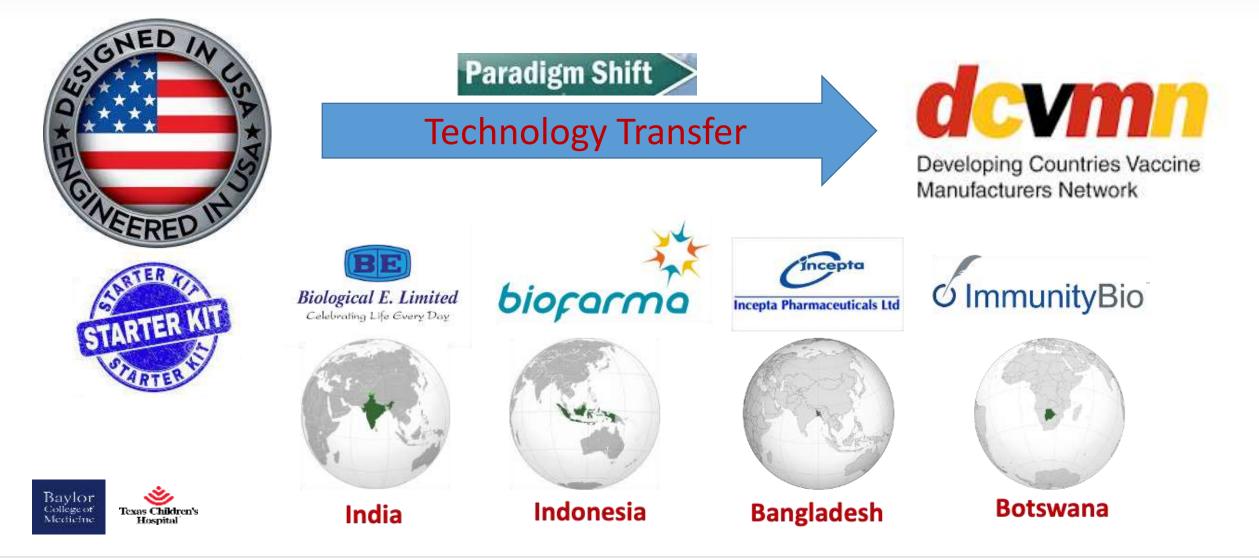
NantBotswana

O ImmunityBio

Biological E. Limited Celebrating Life Every Day

Scenario 3 – Open Science

The Cuban Case


- Similar engineering and process development strategy
 – monomeric RBD on Alum
- Prior yeast (*Pichia*) Experience with Hepatitis B Vaccine

The Abdala vaccine reportedly consists of a monomeric receptor binding domain subunit, residues 331-530 of the Spike protein of SARS-CoV-2 strain 156 Wuhan-Hu-1, expressed in the yeast Pichia pastoris at 30–40 mg/L fermentation yield.

First-rate Innovation (first in class) versus Follow-on Product Development

An alternative to the Multinational Model of Vaccine Development

One Hundred (100) Million Vaccinations

(Covid-19 vaccine: rRBD + Alum + Dynavax CpG1018)

Biological E. Limited

Celebrating Life Every Day

CORBEVAX[®]

India's first indigenously developed Protein Sub-unit COVID-19 Vaccine

India's first DCGI approved Heterologous COVID-19 booster dose for 18 years above

https://www.biologicale.com/corbevax.html

CORBEVAX[™] had 50% fewer adverse events than COVISHIELD[™] no serious adverse events

Continuous monitoring show high persistence of immune response = durability

India

Halal-certified COVID-19 Vaccine

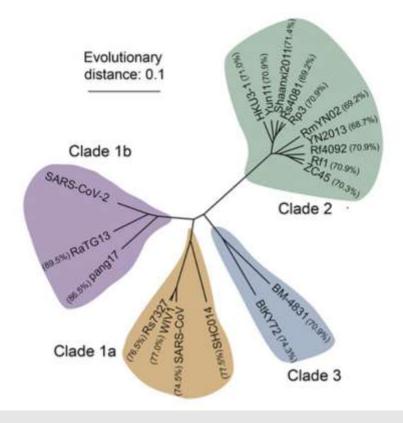
Indonesia

What's Brewing?

Development of next-generation, more broadly effective coronavirus vaccines

- Bivalent COVID-19 vaccine with BA4/5 protein construct
- Combination (co-formulation and co-administration) vaccines (with SARS-1, SARS-2 (including VoCs) and Clade 2 candidates) to induce epitope broadening
- New consensus coronavirus vaccine antigen (Clade 1a, 1b and 2) to induce epitope broadening:
 - Chimeric poly-valent
 - Mono-cistronic fusions bi- and tri-clade

Alternative delivery and formulation science (IN and oral)


Structure-function interactions studies

Variant- and clade-specific monoclonal antibodies

Variant and clade specific pseudovirus

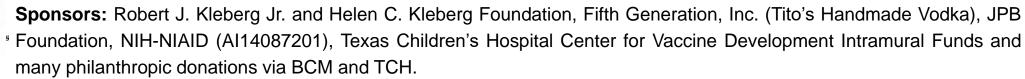
Lessons from COVID-19 & poverty-associated infectious disease vaccines for future epidemic & pandemic preparedness

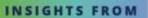
Vaccine Insights 2022; 1(1), 115-120

Lesson	Category	What we learned
1	Funding	Early, continuous, and sustainable funding for de-risking of the vaccine development pathway is needed
2	Regulatory	Concurrent and expedited regulatory review procedures instituted globally are essential. This should include close coordination between regulatory agencies and other actors such as governmental agencies, industry, non-profits, and academics.
3	Manufacturing capacity	Large multinationals and small and medium biotechnology companies, as well as the Developing Country Vaccine Manufacturing Network (DCVMN), need an equal share of the funding for production accountability
4	Equity and access	The pace and cost of introduction for vaccines developed for PAIDs need to be revisited to enable better equity and access in LMICs
5	Absorption capacity	An adaptable framework for setting efficient supply chains, staffing, equipment, and data collection, with strategic communications and community engagement are key for successful vaccination
6	Leadership	Coordinated and clear accountability is needed to plan and execute end-to-end, without incoordination delay

Jerome H. Kim, Maria Elena Bottazzi

12


Cuba, June 2022



MEDICC

Cuba's COVID-19 Vaccine Enterprise: Report from a High-Level Fact-Finding Delegation to Cuba

EXECUTIVE SUMMARY

http://mediccreview.org/wpcontent/uploads/2022/10/MEDICC-Cuba-COVID-19-Vaccine-Executive-Summary_2022.pdf