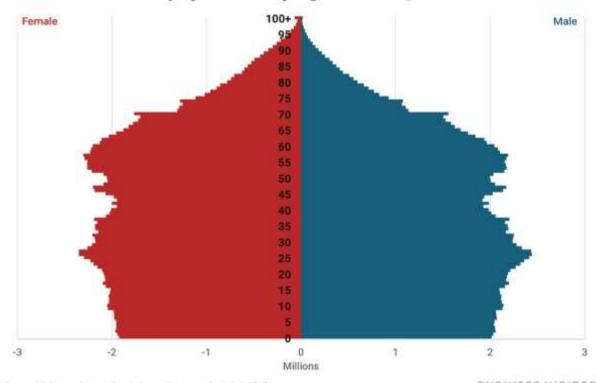
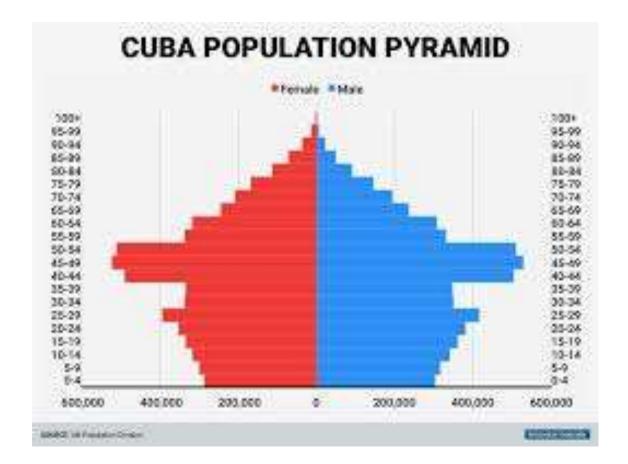

Innovative drugs for neurodegenerative diseases in Cuba

Mitchell Valdes-Sosa, MD, PhD


Director Cuban Neuroscience Centre Member Emeritus of the Cuban Academy of Sciences


MARKETS & CHART OF THE DAY

US population by age and sex, 2017

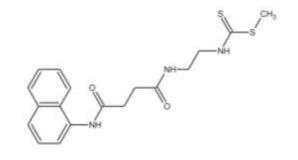
Source: US Census Bureau. Population estimates are for July 1, 2017.

Can US-CUBA collaborate on innovative drugs for neurodegenerative disease?

- Populations are ageing in both countries
- Unmet needs (no fully satisfactory treatment)
- Need to work on these topic easy to defend
- Precedent in first Cuban-American joint venture between the Center for Molecular Immunology and Roswell Cancer Center

Variants of collaboration

- Small scale
- Larger scale

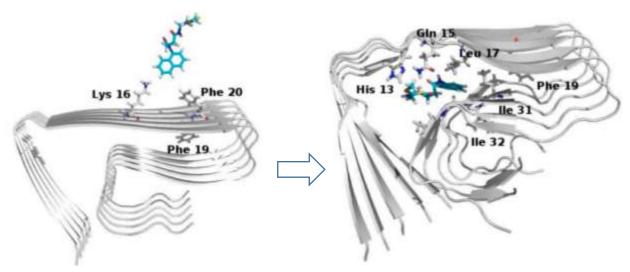

Cuban portfolio of Neurotherapeutic molecules

Molecules	Indication	Preclinical	Phase I	Phase II	Phase III	Approval
NeuroEPO	Alzheimer´s Disease					conditioned
	Cerebellar Ataxia					
	Parkinson's Disease					
	Dementia (no Alzheimer Disease)					
CNEURO-201	Alzheimer's disease (sympt. treatment)	se (sympt. treatment)				
	Alzheimer's disease (preventive treatment)					
CNEURO-220	Alzheimer´s disease					
CIGB-845	Alzheimer´s Disease					
CIDEM 112/113	Alzheimer´s Disease					
	Parkinson's Disease					

In progress

CNEURO-201 (Amylovis)

CNEURO-201: Synthetic naphthalene-derived molecule with high affinity for β-amyloid plaques

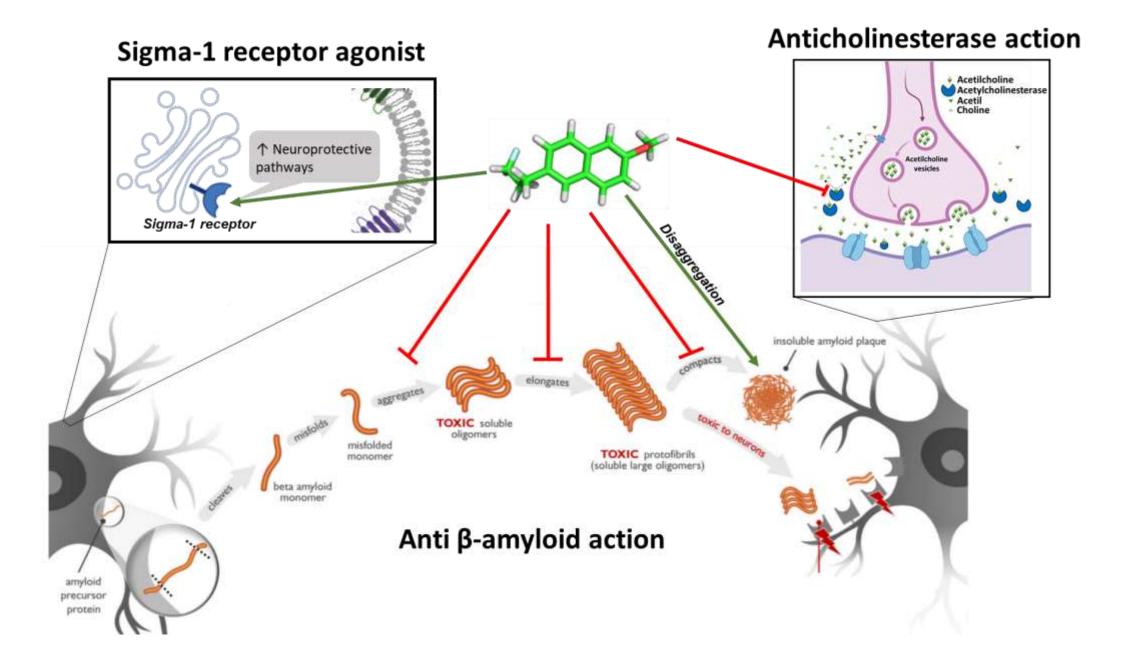


CNEURO-201 exhibits the most stable interaction with Aβ peptide and fibrils among a family of compounds

Complexes	ΔG (kcal/ mol)	K_{eq}	Complexes	ΔG (kcal/ mol)	K_{eq}
4-Aβ ₁₋₄₂ peptide	-4.9*	2.85×10^{3}	4-Aβ ₁₋₄₂ fibril	-3.3	2.12 × 10 ²
	-6.3	2.76×10^{4}	6-Aβ ₁₋₄₂ fibril	-6.3	2.76×10^4
7-Aβ ₁₋₄₂ peptide	-5.5*	7.54×10^{3}	7-Aβ ₁₋₄₂ fibril	-4.6	1.75×10^{3}
	-7.4*	1.65×10^{5}	8-Aβ ₁₋₄₂ fibril	-7.7	2.68×10^{5}

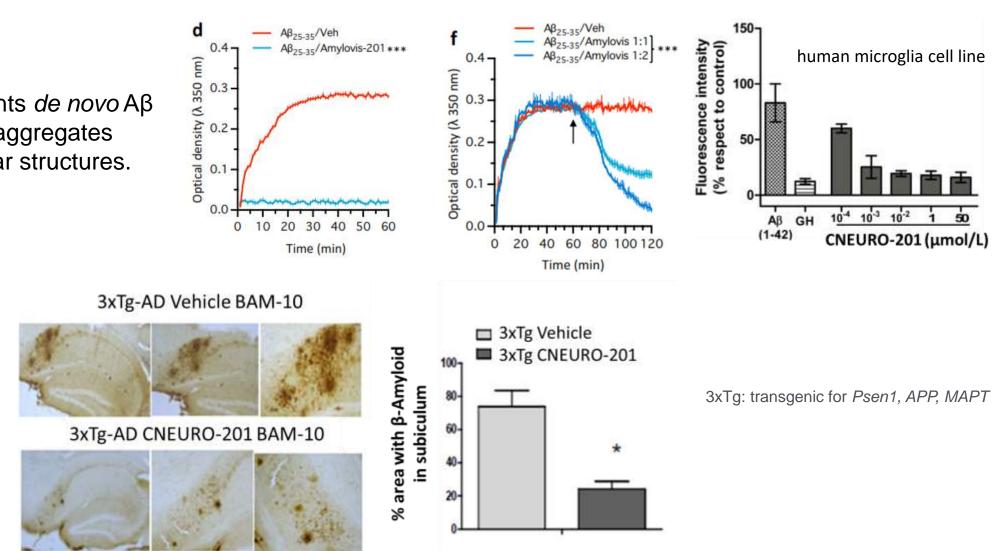
^{* 90} ns.

Representative snapshots of the conformational evolution of CNEURO201-A61-42 fibril complex at 0 and 300 ns, using molecular dynamics simulations



CNEURO-201/β-amyloid interaction profile

- a) Hydrophobic interactions, b) van der Waals forces and
- c) hydrogen bond


^{** 300} ns of MD simulation times.

CNEURO-201

CNEURO-201 exhibits anti-aggregation properties

CNEURO-201 prevents *de novo* Aβ aggregation and disaggregates already formed fibrillar structures.

Representative immunohistochemistry photo-micrographs of the subiculum and CA1 hippocampus, in sagittal sections.

Rivera-Marrero, S 2020. Bioorg & Med Chem.

JM-20 (CIDEM-112/113)

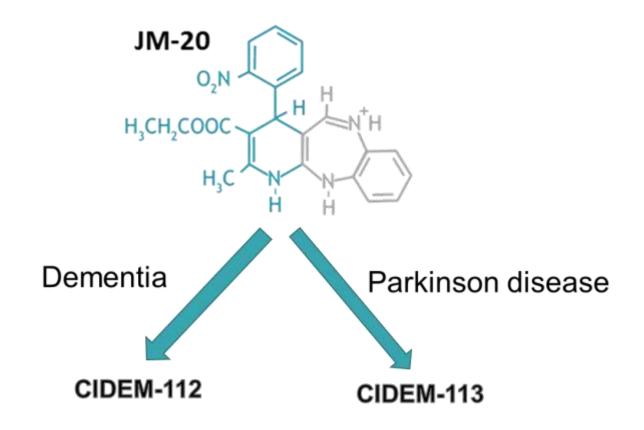
Benzodiazepine-dihydropyridine hybrid molecule

European Journal of Pharmacology 726 (2014) 57-65

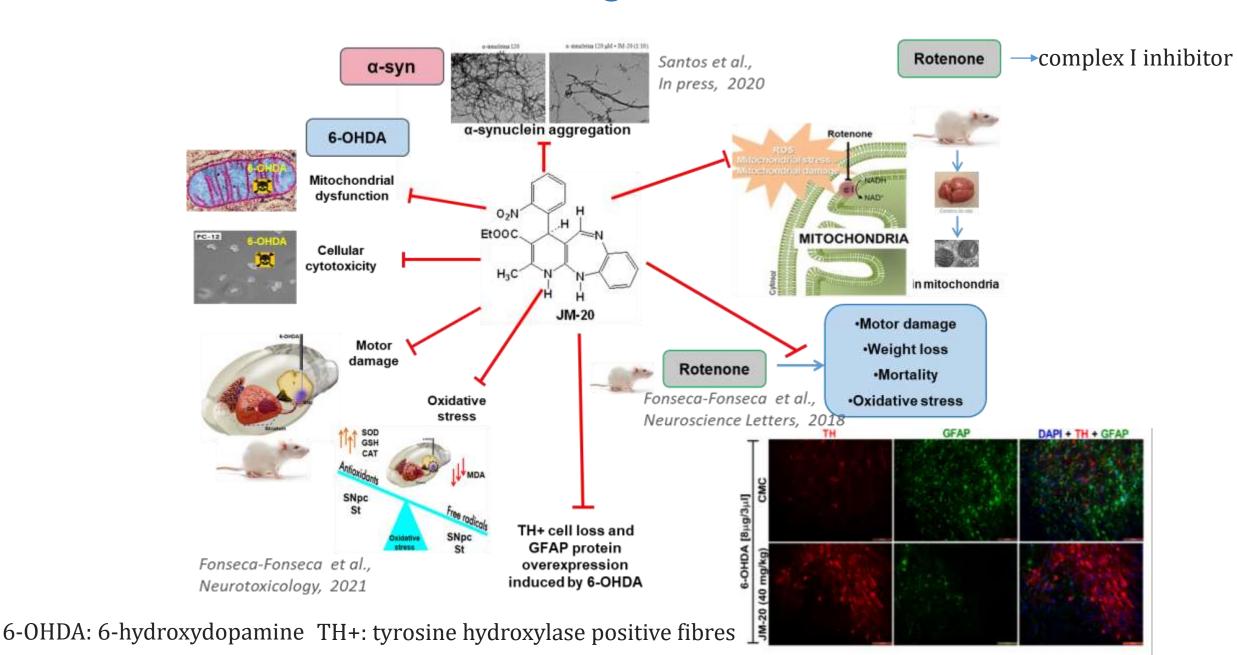
Contents lists available at ScienceDirect

European Journal of Pharmacology

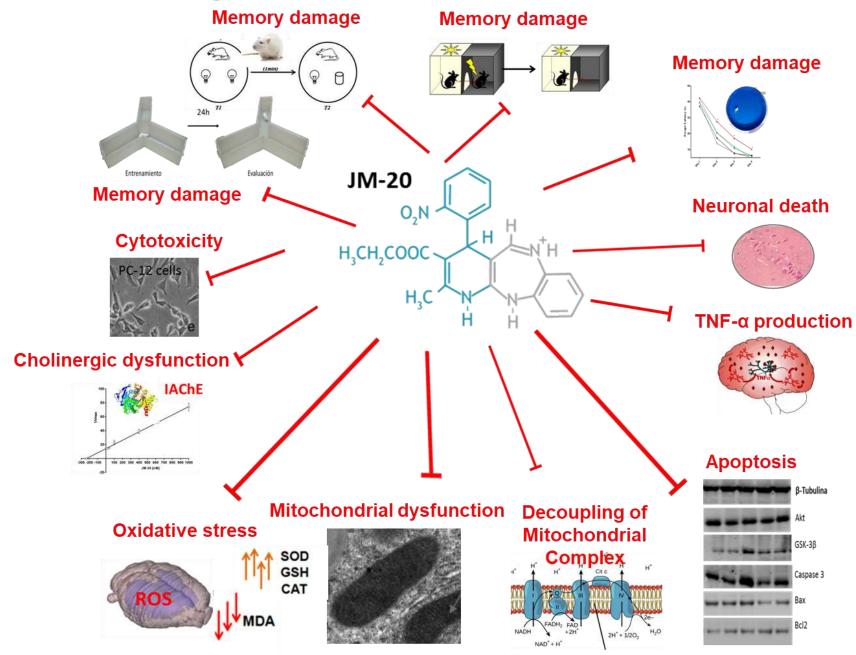
journal homepage: www.elsevier.com/locate/ejphar



Molecular and cellular pharmacology


JM-20, a novel benzodiazepine-dihydropyridine hybrid molecule, protects mitochondria and prevents ischemic insult-mediated neural cell death in vitro

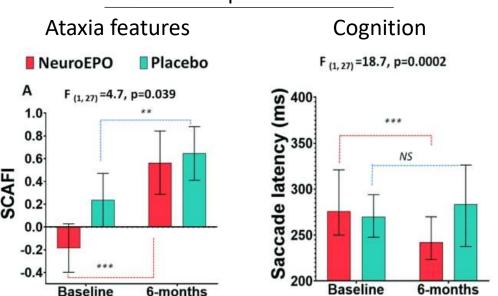
Yanier Nuñez-Figueredo ^a, Jeney Ramírez-Sánchez ^a, René Delgado-Hernández ^a, Marlene Porto-Verdecia ^a, Estael Ochoa-Rodríguez ^b, Yamila Verdecia-Reyes ^b, Javier Marin-Prida ^c, Michael González-Durruthy ^c, Sergio A. Uyemura ^d, Fernando P. Rodrígues ^c, Carlos Curti ^c, Diogo O. Souza ¹, Gilberto L. Pardo-Andreu ^{c,*}

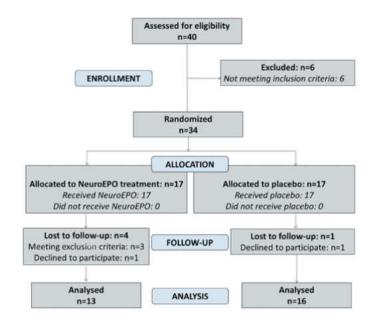

CIDEM-113 as a multi-target directed molecule: Parkinson

CIDEM-112 as a multi-target directed molecule: Dementia

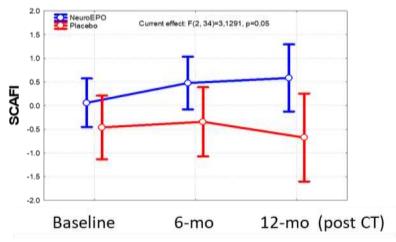
Dementia moldels

- Scopolamine (Cholinergic model)
- AlCl3 (neuroinflammation model)
- Streptozotocin (neuroenergentic model)


NeuroEPO in Spinocerebellar ataxia type 2

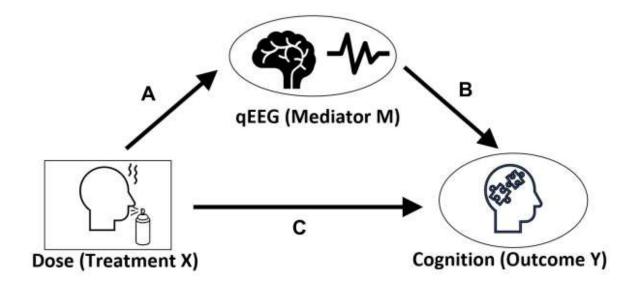

RESEARCH ARTICLE

Erythropoietin in Spinocerebellar Ataxia Type 2: Feasibility and Proof-of-Principle Issues from a Randomized Controlled Study


Roberto Rodriguez-Labrada, PhD, ¹² Ricardo Ortega-Sanchez, MD, ¹ Patricia Hernández Casaña, PhD, ³ Orestes Santos Morales, MD, ³ Maria del Carmen Padrón-Estupiñan, MD, ⁴ Maricela Batista-Nuñez, MD, ⁵ Daise Jiménez Rodríguez, MSc, ⁶ Nalia Canales-Ochoa, BSc, ¹ Arnoy Peña Acosta, BSc, ¹ Jacqueline Medrano Montero, MD, PhD, ¹ Pedro Enrique Labrada Aguiliera, MD, ⁵ Annelie Estupiñán Rodríguez, BSc, ¹ Yaimee Vazquez-Mojena, MSc, ^{1,2} Dennis Almaguer Gotay, MSc, ³ Judey Ayrned-García, BSc, ³ Idrian García-García, PhD, ⁶ Reydenis Torres Vega, BSc, ¹ Carmen Viada González, MSc, ³ Carmen M. Valenzuela Silva, MSc, ³ Yanelis Silva Ricardo, BSc, ⁷ Jorge Columbié Ximelis, BSc, ⁷ Kenia Tribin Rivero, MD, ⁶ Roselin Valle Cabrera, MSc, ⁸ Julio Cesar García-Rodríguez, PhD, ⁹ Tania Crombet Ramos, PhD, ³ Daniel Amaro-González, PhD, ³ Teresita Rodríguez-Obaya, PhD, ³ and Luis Velázquez-Pérez, MD, PhD, DrSc ^{1,10*}

Improve

Follow-up assessment (six months after clinical study


NeuroEPO in Parkinson's disease

The Effect of Neuroepo on Cognition in Parkinson's Disease Patients Is Mediated by Electroencephalogram Source Activity

OPEN ACCESS

Maria L. Bringas Vega^{1,3+1}, Ivonne Pedroso Ibáñez¹⁰, Fuleah A. Razzaq¹¹, Min Zhang¹¹, Lilia Morales Chacôn³, Peng Ren³, Lidice Galan Garcia³, Peng Gan³, Trinidad Virues Alba³, Carlos Lopez Naranjo³, Marjan Jahanshahi^{1,4}, Jorge Bosch-Bayard^{1,3+} and Pedro A. Valdes-Sosa^{1,3+}

- \Box 66% of the total effect of the cognitive improvement was mediated by qEEG (p = 0.0001), with the remaining direct effect between dose and Cognition (p = 0.002), due to other causes.
- ☐ These results suggest that Neuroepo has a positive influence on Cognition in PD patients and that a large portion of this effect is mediated by brain mechanisms reflected in qEEG.

Concluding remarks

- ☐ Cuban scientists are in the race against neurodegenerative diseases as a primary goal of the National Program of Neurosciences and Neurotechnology
- ☐ The molecules act though different mechanisms exhibited and thus could potentially benefit different symptoms/patients
- ☐ The close collaboration between the Cuban Biotechnology and the Cuban Health System is as a key asset for for this research
- ☐ People in both the US and Cuba could benefit from this work.

Finlay

Lazear

Reed